23 November 2018 : Original article
Protective Effects of Apoptosis of Kupffer Cells Induced by Zoledronate Liposomes Following Hepatic Ischemia-Reperfusion Injury
Qiao-Hong Zhao1AG, Feng Han2AG, Kun Wu3B, Jie Zhang3C, Tian-Fang Xia3C, Jian Chen3D, Zhen-Shen Qing3D, Li-Qun Pang3EF*DOI: 10.12659/AOT.909982
Ann Transplant 2018; 23:815-821
Abstract
BACKGROUND: The goal of this study was to observe the effect of the apoptosis of Kupffer cells (KCs) selectively induced by zoledronate liposomes following the hepatic ischemia-reperfusion injury (IRI) in the rat liver transplantation model and to explore its mechanisms.
MATERIAL AND METHODS: The rat liver transplantation model was established using the improved Kamada method. Male Sprague Dawley rats were randomly divided into 3 groups: no liver transplantation or drug treatment (Group A); donor rats were injected with 1 mL normal saline through the tail vein for 3 continuous days before transplantation, and the donor liver was preserved in cold for 2 hours (Group B); donor rats were injected with 1 mL zoledronate liposomes (0.001 mg/mL) through the tail vein for 3 continuous days before transplantation, and the donor liver was preserved in cold for 2 hours (Group C). At 24 hours after transplantation, the receiving rats were sacrificed for sampling.
RESULTS: Compared with Group C and Group A, the bile secretion flow was dramatically decreased in Group B, whereas the serum liver function index [alanine aminotransferase (ALT), glutamate aminotransferase (AST), and γ-glutamyl transpeptidase (γ-GT)] was significantly increased (P<0.01), and the pathological injury area was obviously increased. Compared with Group B, the levels of serum interleukin1 (IL-1), tumor necrosis factor-α (TNF-α), and the apoptotic index in Group C were significantly decreased (P<0.05), and Suzuki scores of congestion, vacuolar degeneration, and necrosis were all reduced (P<0.05).
CONCLUSIONS: The apoptosis of KCs selectively induced by zoledronate liposomes inhibited the inflammatory cascade reaction induced by KC activation and reduced the release of cytokines and decreased the extent of IRI in the liver transplantation in animal model.
Keywords: Kupffer cells, Liver Transplantation
In Press
Original article
Urinary Chemokines CXCL9 and CXCL10 Are Non-Invasive Biomarkers of Kidney Transplant RejectionAnn Transplant In Press; DOI: 10.12659/AOT.944762
Original article
Risk Factors for Graft Failure After Penetrating Keratoplasty in Eastern China from 2018 to 2021Ann Transplant In Press; DOI: 10.12659/AOT.945388
Original article
Predictive Model for Post-Transplant Renal Fibrosis Using Ultrasound Shear Wave ElastographyAnn Transplant In Press; DOI: 10.12659/AOT.945699
Original article
The Long-Acting Glucagon-Like Peptide-2 Analog Apraglutide Enhances Intestinal Protection and Survival Afte...Ann Transplant In Press; DOI: 10.12659/AOT.945249
Most Viewed Current Articles
05 Apr 2022 : Original article 12,977
Impact of Statins on Hepatocellular Carcinoma Recurrence After Living-Donor Liver TransplantationDOI :10.12659/AOT.935604
Ann Transplant 2022; 27:e935604
22 Nov 2022 : Original article 10,134
Long-Term Effects of Everolimus-Facilitated Tacrolimus Reduction in Living-Donor Liver Transplant Recipient...DOI :10.12659/AOT.937988
Ann Transplant 2022; 27:e937988
12 Jan 2022 : Original article 9,446
Risk Factors for Developing BK Virus-Associated Nephropathy: A Single-Center Retrospective Cohort Study of ...DOI :10.12659/AOT.934738
Ann Transplant 2022; 27:e934738
15 Mar 2022 : Case report 7,198
Combined Liver, Pancreas-Duodenum, and Kidney Transplantation for Patients with Hepatitis B Cirrhosis, Urem...DOI :10.12659/AOT.935860
Ann Transplant 2022; 27:e935860