Logo Annals of Transplantation Logo Annals of Transplantation Logo Annals of Transplantation

01 January 1997

Porcine neonatal pancreatic cell clusters (NPCCs): a potential source of tissue for islet transplantation.

G C Weir, R R Quickel, K H Yoon, K Tatarkiewicz, T R Ulrich, J Hollister-Lock, S Bonner-Weir

Ann Transplant 1997; 2(3): 63-68 :: ID: 647806

Abstract

This is a short review of porcine neonatal pancreatic cell clusters (NPCCs) which might eventually be useful for beta cell replacement therapy in people with diabetes. The current success with islet allograft transplantation is reviewed and is problematic because only partial success has been obtained and the shortage of human islet tissue means that only a small fraction of people with diabetes would be able to benefit. For these reasons there is considerable interest in xenotransplantation, with pigs being a particularly attractive source. The relative merits of early fetal, late fetal, neonatal and adult porcine tissue are discussed. Neonatal tissue has several attractive features, with their hardiness and potential for growth being especially noteworthy. NPCCs are harvested after digested and dispersed clumps of cells are kept in culture for 7 days. The NPCCs consist mainly of duct cells, protodifferentiated cells and mature endocrine cells. The protodifferentiated cells are either double or triple stained for insulin, cytokeratin 7, glucagon, pancreatic polypeptide, or somatostatin. When transplanted into diabetic nude mice it usually takes weeks before glucose levels are normalized, and during that time differentiation and growth of the graft can be observed. Potential strategies for controlling xenograft rejection are mentioned, with these being immunosuppression, induction of tolerance, immunobarrier devices, and gene transfer approaches.

Keywords: Animals, Newborn, Diabetes Mellitus, Type 1 - surgery, Fetal Tissue Transplantation, Glucagon - analysis, Glucagon - analysis, Insulin - analysis, Insulin - analysis, Islets of Langerhans - cytology, Islets of Langerhans - embryology, Islets of Langerhans Transplantation, Keratins - analysis, Mice, Pancreatic Polypeptide - analysis, Somatostatin - analysis, Swine, Transplantation, Heterologous

0 Comments

Most Viewed Current Articles

26 Jan 2022 : Review article  

Recurrence of Hepatocellular Carcinoma After Liver Transplantation: Risk Factors and Predictive Models

DOI :10.12659/AOT.934924

Ann Transplant 2022; 27:e934924

24 Aug 2021 : Review article  

Normothermic Machine Perfusion (NMP) of the Liver – Current Status and Future Perspectives

DOI :10.12659/AOT.931664

Ann Transplant 2021; 26:e931664

29 Dec 2021 : Original article  

Efficacy and Safety of Tacrolimus-Based Maintenance Regimens in De Novo Kidney Transplant Recipients: A Sys...

DOI :10.12659/AOT.933588

Ann Transplant 2021; 26:e933588

15 Mar 2022 : Case report  

Combined Liver, Pancreas-Duodenum, and Kidney Transplantation for Patients with Hepatitis B Cirrhosis, Urem...

DOI :10.12659/AOT.935860

Ann Transplant 2022; 27:e935860

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Annals of Transplantation eISSN: 2329-0358
Annals of Transplantation eISSN: 2329-0358