Logo Annals of Transplantation Logo Annals of Transplantation Logo Annals of Transplantation

30 September 2011

The culture of temporary tumor-like bone marrow mesenchymal stem cells (TT-BMSC) and the detection of cell biology property

Yi ChenABCDEF, Lin CongC, Ximeng YinE, Baotie DongD, Yaxin HanF, Guanjun TuAD

Ann Transplant 2011; 16(3): 49-58 :: ID: 881995

Abstract

Background: Bone marrow mesenchymal stem cells (BMSC) are common seed cells for transplantation. However, there are some limitations in their use that have not yet been resolved. Our research modified tumor-related genes temporarily on BMSC which simulated tumorigenesis temporarily in vitro. The cells were named temporarily tumor-like bone marrow mesenchymal stem cells (TT-BMSC).
Material/Methods: Cultivation of TT-BMSC: BMSC were cultured and identified, then the BMSC were transfected MMP-2 gene expressive vector and screened for 4 weeks by G418. Finally, the anti-oncogene PTEN of BMSC was knockdown by ribonucleic acid interference (RNAi) using PTEN gene special small interfering ribonucleic acid (SiRNA). The detection cell biology property of TT-BMSC in vitro: Methyl thiazolyl tetrazolium (MTT) assay and Cell cycle analysis for cell proliferation, Matrigel Invasion Assay for invasion and migration, and the cell model of ischemia and anoxia in vitro for survival.
Results: RT-PCR and Western blot results indicated MMP-2 expression increase significantly after transfection of the MMP-2 expressive vector in the BMSC, while PTEN mRNA and protein expression decrease significantly after PTEN RNAi, and the longest duration of the PTEN RNAi is 15 days. MTT assay and Cell cycle analysis indicated TT-BMSC cell growth vigor is reinforced significantly (P<0.001). Matrigel Invasion Assay showed that TT-BMSC can go through the matrigel successfully (P<0.001). The ability of TT-BMSC to tolerate ischemia and anoxia increased significantly in the model of ischemia and anoxia in vitro (P<0.001).
Conclusions: We cultivated TT-BMSC successfully and TT-BMSC possessed a powerful ability to survive, proliferate, invade and migrate in vitro.

Keywords: bone marrow mesenchymal stem cells, Matrix metalloproteinase-2, phosphatase and tensin homolog deleted on chromosome ten, ribonucleic acid interference

Add Comment 0 Comments

In Press

12 Feb 2024 : Original article  

No Prognostic Impact of Graft-to-Recipient Weight Ratio on Hepatocellular Carcinoma Recurrence Following Li...

Ann Transplant In Press; DOI: 10.12659/AOT.942767  

21 Feb 2024 : Original article  

Use of LCP-Tacrolimus (LCPT) in Kidney Transplantation: A Delphi Consensus Survey of Expert Clinicians

Ann Transplant In Press; DOI: 10.12659/AOT.943498  

Most Viewed Current Articles

05 Apr 2022 : Original article  

Impact of Statins on Hepatocellular Carcinoma Recurrence After Living-Donor Liver Transplantation

DOI :10.12659/AOT.935604

Ann Transplant 2022; 27:e935604

12 Jan 2022 : Original article  

Risk Factors for Developing BK Virus-Associated Nephropathy: A Single-Center Retrospective Cohort Study of ...

DOI :10.12659/AOT.934738

Ann Transplant 2022; 27:e934738

22 Nov 2022 : Original article  

Long-Term Effects of Everolimus-Facilitated Tacrolimus Reduction in Living-Donor Liver Transplant Recipient...

DOI :10.12659/AOT.937988

Ann Transplant 2022; 27:e937988

15 Mar 2022 : Case report  

Combined Liver, Pancreas-Duodenum, and Kidney Transplantation for Patients with Hepatitis B Cirrhosis, Urem...

DOI :10.12659/AOT.935860

Ann Transplant 2022; 27:e935860

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Annals of Transplantation eISSN: 2329-0358
Annals of Transplantation eISSN: 2329-0358