29 June 2012
Tacrolimus-induced nephrotoxicity and genetic variability: A review
Violette M.G.J. Gijsen, Parvaz Madadi, Marie-Pierre Dube, Dennis A. Hesselink, Gideon Koren, Saskia N. de WildtDOI: 10.12659/AOT.883229
Ann Transplant 2012; 17(2): 111-121
Abstract
Background: Calcineurin inhibition (CNI) is the mainstay of immunosuppressant therapy for most solid organ transplant patients. High tacrolimus levels are related with acute nephrotoxicity, but the relationship with chronic toxicity is less clear. Variation in disposition of tacrolimus is associated with genetic variation in CYP3A5. Hence, could genetic variation in CYP3A5 or other genes involved in tacrolimus disposition and effect be associated with a risk for tacrolimus-induced nephrotoxicity? To perform a review of the literature and to identify if genetic variation in CYP3A5 or other genes involved in tacrolimus disposition or effect may be associated with tacrolimus-induced nephrotoxicity and/or renal dysfunction in solid organ transplant recipients. Material/Methods: Pubmed/Medline, Embase and Google were searched from their inception till November 8th 2010 with the search terms ‘tacrolimus’, ‘genetics’, and ‘nephrotoxicity’ or ‘renal dysfunction’. References of relevant articles were screened as well. Results: We identified 13 relevant papers. In kidney recipients, associations between donor ABCB1, recipient CCR5 genotype and tacrolimus-induced nephrotoxicity were found. CYP3A5 genotype studies in kidney recipients yielded contradictory results. In liver recipients, a possible association between recipient ACE, CYP3A5, ABCB1 and CYP2C8 genetic polymorphisms and tacrolimus-induced nephrotoxicity was suggested. In heart recipients, TGF-β genetic polymorphisms were associated with tacrolimus-induced nephrotoxicity. The quality of the studies varied considerably. Conclusions: Limited evidence suggests that variation in genes involved in pharmacokinetics (ABCB1 and CYP3A5) and pharmacodynamics (TGF-β, CYP2C8, ACE, CCR5) of tacrolimus may impact a transplant recipients’ risk to develop tacrolimus-induced nephrotoxicity across different transplant organ groups.
Keywords: Pharmacogenetics, Transplant, Tacrolimus, nephrotoxicity, CYP3A5, ABCB1, TGF-β
1040 63
In Press
02 Jun 2023 : Original article
Survival analysis of transplant-associated thrombotic microangiopathy under different diagnostic criteria a...Ann Transplant In Press; DOI: 10.12659/AOT.939890
17 May 2023 : Original article
Results of Liver Retransplantation After Rescue Hepatectomy: A Single-Center StudyAnn Transplant In Press; DOI: 10.12659/AOT.939557
10 May 2023 : Original article
Incidence of Thromboembolic Complications Following Kidney Transplantation with Short and Extended Aspirin ...Ann Transplant In Press; DOI: 10.12659/AOT.939143
Most Viewed Current Articles
24 Aug 2021 : Review article
Normothermic Machine Perfusion (NMP) of the Liver – Current Status and Future PerspectivesDOI :10.12659/AOT.931664
Ann Transplant 2021; 26:e931664
26 Jan 2022 : Review article
Recurrence of Hepatocellular Carcinoma After Liver Transplantation: Risk Factors and Predictive ModelsDOI :10.12659/AOT.934924
Ann Transplant 2022; 27:e934924
29 Dec 2021 : Original article
Efficacy and Safety of Tacrolimus-Based Maintenance Regimens in De Novo Kidney Transplant Recipients: A Sys...DOI :10.12659/AOT.933588
Ann Transplant 2021; 26:e933588
15 Mar 2022 : Case report
Combined Liver, Pancreas-Duodenum, and Kidney Transplantation for Patients with Hepatitis B Cirrhosis, Urem...DOI :10.12659/AOT.935860
Ann Transplant 2022; 27:e935860